Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inflamm Res ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668877

RESUMO

Lipoxins (LXs) are a class of endogenous bioactive lipid mediators that are involved in the regulation of inflammation. They exert immunomodulatory effects by regulating the behaviour of various immune cells, including neutrophils, macrophages, and T and B cells, by promoting the clearance of apoptotic neutrophils. This helps to dampen inflammation and promote tissue repair. LXs regulate the expression of many inflammatory genes by modulating the levels of transcription factors, such as nuclear factor κB (NF-κB), activator protein-1 (AP-1), nerve growth factor-regulated factor 1A binding protein 1 (NGF), and peroxisome proliferator activated receptor γ (PPAR-γ), which are elevated in various diseases, such as respiratory tract diseases, renal diseases, cancer, neurodegenerative diseases, and viral infections. Lipoxin-mediated signaling is involved in chronic inflammation, cancer, diabetes-associated kidney disease, lung injury, liver injury, endometriosis, respiratory tract diseases, neurodegenerative diseases, chronic cerebral hypoperfusion, and retinal degeneration. In this study, we systematically investigated the intricate network of lipoxin signaling by analyzing the relevant literature. The resulting map comprised 467 molecules categorized as activation/inhibition, enzyme catalysis, gene and protein expression, molecular associations, and translocation events. This map serves as a valuable resource for understanding the complexity of lipoxin signaling and its impact on various cellular functions.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38639111

RESUMO

Interleukin-26 (IL-26) is a cytokine that belongs to the IL-20 subfamily and is primarily expressed in T helper 1 cells and Th17 memory CD4+ cells. Its receptor complex, consisting of IL-20R1 and IL-10R2, activates a signaling pathway involving several proteins such as Janus kinase 1 and tyrosine-protein kinase, signal transducer and activator of transcription (STAT) 1, and STAT3. This leads to the initiation of downstream signaling cascades that play a crucial role in various biological processes, including inflammation, immune response regulation, atopic dermatitis, macrophage differentiation, osteoclastogenesis, antibacterial host defense, anti-apoptosis, and tumor growth. In this study, we curated literature data pertaining to IL-26 signaling. The curated map includes a total of seven activation/inhibition events, 16 catalysis events, 33 gene regulation events, 25 protein expression types, two transport events, and three molecular associations.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38451706

RESUMO

Interleukin-19 (IL-19) and Interleukin-20 (IL-20) are inflammatory cytokines belonging to the IL-10 family with immunoregulatory properties. Emerging evidence highlights the importance of association of these cytokines with both immunological and inflammatory disorders, including chronic inflammation, cardiac dysfunction, and cancer. IL-19 and IL-20 bind to the heterodimeric receptor complex and induce multiple downstream signaling cascades by activating the signal transducer and activator of transcription 3 (STAT3), Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), AKT serine/threonine kinase 1 (AKT1), and NFKB inhibitor alpha (NFKBIA), leading to proinflammatory and anti-inflammatory reactions in cancer, inflammation, tumor microenvironment, and infectious diseases. Considering the significant role of these cytokines, we integrated its cellular signaling network by combining multiomics molecular events associated with 56 molecules of induced by IL-19 and 156 molecules of by IL-20. The reactions of these signaling events are classified into enzyme catalysis/post-translational modifications, activation/inhibition events, molecular associations, gene regulations at the mRNA and protein level, and the protein translocation events. We believe that this signaling pathway map would serve as a knowledge base, that aid researchers and clinicians to understand and explore the intricate mechanisms and identify novel signaling components and therapeutic targets for diseases associated with dysregulated IL-19 and IL-20 signaling.

4.
Int J Biochem Cell Biol ; 170: 106558, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479581

RESUMO

Thousand and one amino acid kinase 1 (TAOK1) is a sterile 20 family Serine/Threonine kinase linked to microtubule dynamics, checkpoint signaling, DNA damage response, and neurological functions. Molecular-level alterations of TAOK1 have been associated with neurodevelopment disorders and cancers. Despite their known involvement in physiological and pathophysiological processes, and as a core member of the hippo signaling pathway, the phosphoregulatory network of TAOK1 has not been visualized. Aimed to explore this network, we first analyzed the predominantly detected and differentially regulated TAOK1 phosphosites in global phosphoproteome datasets across diverse experimental conditions. Based on 709 qualitative and 210 quantitative differential cellular phosphoproteome datasets that were systematically assembled, we identified that phosphorylation at Ser421, Ser9, Ser965, and Ser445 predominantly represented TAOK1 in almost 75% of these datasets. Surprisingly, the functional role of all these phosphosites in TAOK1 remains unexplored. Hence, we employed a robust strategy to extract the phosphosites in proteins that significantly correlated in expression with predominant TAOK1 phosphosites. This led to the first categorization of the phosphosites including those in the currently known and predicted interactors, kinases, and substrates, that positively/negatively correlated with the expression status of each predominant TAOK1 phosphosites. Subsequently, we also analyzed the phosphosites in core proteins of the hippo signaling pathway. Based on the TAOK1 phosphoregulatory network analysis, we inferred the potential role of the predominant TAOK1 phosphosites. Especially, we propose pSer9 as an autophosphorylation and TAOK1 kinase activity-associated phosphosite and pS421, the most frequently detected phosphosite in TAOK1, as a significant regulatory phosphosite involved in the maintenance of genome integrity. Considering that the impact of all phosphosites that predominantly represent each kinase is essential for the efficient interpretation of global phosphoproteome datasets, we believe that the approach undertaken in this study is suitable to be extended to other kinases for accelerated research.


Assuntos
Fosfotransferases , Proteínas Serina-Treonina Quinases , Fosfotransferases/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
5.
OMICS ; 28(1): 8-23, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38190280

RESUMO

Checkpoint kinase 1 (CHK1), a serine/threonine kinase, plays a crucial role in cell cycle arrest and is a promising therapeutic target for drug development against cancers. CHK1 coordinates cell cycle checkpoints in response to DNA damage, facilitating repair of single-strand breaks, and maintains the genome integrity in response to replication stress. In this study, we employed an integrated computational and experimental approach to drug discovery and repurposing, aiming to identify a potent CHK1 inhibitor among existing drugs. An e-pharmacophore model was developed based on the three-dimensional crystal structure of the CHK1 protein in complex with CCT245737. This model, characterized by seven key molecular features, guided the screening of a library of drugs through molecular docking. The top 10% of scored ligands were further examined, with procaterol emerging as the leading candidate. Procaterol demonstrated interaction patterns with the CHK1 active site similar to CHK1 inhibitor (CCT245737), as shown by molecular dynamics analysis. Subsequent in vitro assays, including cell proliferation, colony formation, and cell cycle analysis, were conducted on gastric adenocarcinoma cells treated with procaterol, both as a monotherapy and in combination with cisplatin. Procaterol, in synergy with cisplatin, significantly inhibited cell growth, suggesting a potentiated therapeutic effect. Thus, we propose the combined application of cisplatin and procaterol as a novel potential therapeutic strategy against human gastric cancer. The findings also highlight the relevance of CHK1 kinase as a drug target for enhancing the sensitivity of cytotoxic agents in cancer.


Assuntos
4-Aminopiridina/análogos & derivados , Antineoplásicos , Pirazinas , Neoplasias Gástricas , Humanos , Cisplatino/farmacologia , Quinase 1 do Ponto de Checagem/genética , Procaterol , Neoplasias Gástricas/tratamento farmacológico , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Reposicionamento de Medicamentos , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Descoberta de Drogas , Dano ao DNA , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química
6.
J Cell Commun Signal ; 17(3): 1113-1120, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37142846

RESUMO

Macrophage-stimulating protein (MSP), a serum-derived growth factor belonging to the plasminogen-related kringle domain family, is mainly produced by the liver and released into the blood. MSP is the only known ligand for RON ("Recepteur d'Origine Nantais", also known as MST1R), which is a member of the receptor tyrosine kinase (RTK) family. MSP is associated with many pathological conditions, including cancer, inflammation, and fibrosis. Activation of the MSP/RON system regulates main downstream signaling pathways, including phosphatidylinositol 3-kinase/ AKT serine/threonine kinase/ (PI3-K/AKT), mitogen-activated protein kinases (MAPK), c-Jun N-terminal kinase (JNK) & Focal adhesion kinase (FAK). These pathways are mainly involved in cell proliferation, survival, migration, invasion, angiogenesis & chemoresistance. In this work, we created a pathway resource of signaling events mediated by MSP/RON considering its contribution to diseases. We provide an integrated pathway reaction map of MSP/RON that is composed of 113 proteins and 26 reactions based on the curation of data from the published literature. The consolidated pathway map of MSP/RON mediated signaling events contains seven molecular associations, 44 enzyme catalysis, 24 activation/inhibition, six translocation events, 38 gene regulation events, and forty-two protein expression events. The MSP/RON signaling pathway map can be freely accessible through the WikiPathways Database URL: https://classic.wikipathways.org/index.php/Pathway:WP5353 .

7.
J Biomol Struct Dyn ; 41(24): 15196-15206, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37029757

RESUMO

The calcium/calmodulin dependent protein kinase kinase 2 (CAMKK2) plays a key role in regulation of intracellular calcium levels and signaling pathways. It is involved in activation of downstream signaling pathways that regulate various cellular processes. Dysregulation of CAMKK2 activity has been linked to various diseases including cancer, suggesting that CAMKK2 inhibitors might be beneficial in oncological, metabolic and inflammatory indications. The most pressing issues in small molecule discovery are synthesis feasibility, novel chemical structure and desired biological characteristics. To circumvent this constraint, we employed 'DrugspaceX' for rapid lead identification, followed by repositioning seven FDA-approved drugs for CAMKK2 inhibition. Further, first-level transformation (Set1 analogues) was performed in 'DrugspaceX', followed by virtual screening. The t-SNE visualization revealed that the transformations surrounding Rucaparib, Treprostinil and Canagliflozin are more promising for developing CAMKK2 inhibitors. Second, using the top-ranked Set1 analogues, Set2 analogues were generated, and virtual screening revealed the top-ranked five analogues. Among the top five Set2 analogues, DE273038_5 had the lowest docking score of -11.034 kcal/mol and SA score of 2.59, retaining the essential interactions with Hotspot residues LYS194 and VAL270 across 250 ns simulation period. When compared to the other four compounds, the ligand effectiveness score was 0.409, and the number of rotatable penalties was only three. Further, DE273038_5 after two rounds of transformations was discovered to be novel and had not been previously described in other databases. These data suggest that the new candidate DE273038_5 is likely to have inhibitory activity at the CAMKK2 active site, implying potential therapeutic use.Communicated by Ramaswamy H. Sarma.


Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina , Cálcio , Cálcio/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/química , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Domínio Catalítico , Transdução de Sinais
8.
J Cell Commun Signal ; 17(3): 1105-1111, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37014471

RESUMO

Trophoblast cell surface antigen 2 (TROP2) is a calcium-transducing transmembrane protein mainly involved in embryo development. The aberrant expression of TROP2 is observed in numerous cancers, including triple-negative breast cancer, gastric, colorectal, pancreatic, squamous cell carcinoma of the oral cavity, and prostate cancers. The main signaling pathways mediated by TROP2 are calcium signaling, PI3K/AKT, JAK/STAT, MAPKs, and ß-catenin signaling. However, collective information about the TROP2-mediated signaling pathway is not available for visualization or analysis. In this study, we constructed a TROP2 signaling map with respect to its role in different cancers. The data curation was done manually by following the NetPath annotation criteria. The described map consists of different molecular events, including 8 activation/inhibition, 16 enzyme catalysis, 19 gene regulations, 12 molecular associations, 39 induced-protein expressions, and 2 protein translocation. The data of the TROP2 pathway map is made freely accessible through the WikiPathways Database ( https://www.wikipathways.org/index.php/Pathway:WP5300 ). Development of TROP2 signaling pathway map.

9.
J Cell Commun Signal ; 17(3): 1097-1104, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36944905

RESUMO

Cytoskeleton-associated protein 4 (CKAP4) is a non-glycosylated type II transmembrane protein that serves as a cell surface-activated receptor. It is expressed primarily in the plasma membranes of bladder epithelial cells, type II alveolar pneumocytes, and vascular smooth muscle cells. CKAP4 is involved in various biological activities including cell proliferation, cell migration, keratinocyte differentiation, glycogenesis, fibrosis, thymic development, cardiogenesis, neuronal apoptosis, and cancer. CKAP4 has been described as a pro-tumor molecule that regulates the progression of various cancers, including lung cancer, breast cancer, esophageal squamous cell carcinoma, hepatocellular carcinoma, cervical cancer, oral cancer, bladder cancer, cholangiocarcinoma, pancreatic cancer, myeloma, renal cell carcinoma, melanoma, squamous cell carcinoma, colorectal cancer, and osteosarcoma. CKAP4 and its isoform bind to DKK1 or DKK3 (Dickkopf proteins) or antiproliferative factor (APF) and regulates several downstream signaling cascades. The CKAP4 complex plays a crucial role in regulating the signaling pathways including PI3K/AKT and MAPK1/3. Recently, CKAP4 has been recognized as a potential target for cancer therapy. Due to its biomedical importance, we integrated a network map of CKAP4. The available literature on CKAP4 signaling was manually curated according to the NetPath annotation criteria. The consolidated pathway map comprises 41 activation/inhibition events, 21 catalysis events, 35 molecular associations, 134 gene regulation events, 83 types of protein expression, and six protein translocation events. CKAP4 signaling pathway map data is freely accessible through the WikiPathways Database ( https://www.wikipathways.org/index.php/Pathway:WP5322 ). Generation of CKAP4 signaling pathway map.

10.
J Cell Commun Signal ; 17(3): 1089-1095, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36715855

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) signals through a multi-component receptor system predominantly consisting of glycosyl-phosphatidylinositol-anchored GDNF family receptor alpha-1 (GFRα1) and the Rearranged during transfection (RET) receptor tyrosine kinase. GDNF/RET signaling is vital to the central and peripheral nervous system, kidney morphogenesis, and spermatogenesis. In addition, the dysregulation of the GDNF/RET signaling has been implicated in the pathogenesis of cancers. Despite the extensive research on GDNF/RET signaling, a molecular network of reactions induced by GDNF reported across the published literature. However, a comprehensive GDNF/RET pathway resource is currently unavailable. We describe an integrated signaling pathway reaction map of GDNF/RET consisting of 1151 molecular reactions. These include information pertaining to 52 molecular association events, 70 enzyme catalysis events, 36 activation/inhibition events, 22 translocation events, 856 gene regulation events, and 115 protein-level expression events induced by GDNF in diverse cell types. We developed a comprehensive GDNF/RET signaling network map based on these molecular reactions. The pathway map was made accessible through WikiPathways database ( https://www.wikipathways.org/index.php/Pathway:WP5143 ). Biocuration and development of gene regulatory network map of GDNF/RET signaling pathway.

11.
J Cell Commun Signal ; 17(1): 209-215, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35838944

RESUMO

Interleukin-17A (IL-17A) is one of the member of IL-17 family consisting of other five members (IL-17B to IL-17F). The Gamma delta (γδ) T cells and T helper 17 (Th17) cells are the major producers of IL-17A. Aberrant signaling by IL-17A has been implicated in the pathogenesis of several autoimmune diseases including idiopathic pulmonary fibrosis, acute lung injury, chronic airway diseases, and cancer. Activation of the IL-17A/IL-17 receptor A (IL-17RA) system regulates phosphoinositide 3-kinase/AKT serine/threonine kinase/mammalian target of rapamycin (PI3K/AKT/mTOR), mitogen-activated protein kinases (MAPKs) and activation of nuclear factor-κB (NF-κB) mediated signaling pathways. The IL-17RA activation orchestrates multiple downstream signaling cascades resulting in the release of pro-inflammatory cytokines such as interleukins (IL)-1ß, IL-6, and IL-8, chemokines (C-X-C motif) and promotes neutrophil-mediated immune response. Considering the biomedical importance of IL-17A, we developed a pathway resource of signaling events mediated by IL-17A/IL-17RA in this study. The curation of literature data pertaining to the IL-17A system was performed manually by the NetPath criteria. Using data mined from the published literature, we describe an integrated pathway reaction map of IL-17A/IL-17RA consisting of 114 proteins and 68 reactions. That includes detailed information on IL-17A/IL-17RA mediated signaling events of 9 activation/inhibition events, 17 catalysis events, 3 molecular association events, 68 gene regulation events, 109 protein expression events, and 6 protein translocation events. The IL-17A signaling pathway map data is made freely accessible through the WikiPathways Database ( https://www.wikipathways.org/index.php/Pathway : WP5242).

12.
J Cell Commun Signal ; 17(3): 1081-1088, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36454444

RESUMO

Discoidin domain receptor 1 (DDR1) is one of the receptors that belong to a family of non-integrin collagen receptors. In common, DDR1 is predominantly found in epithelial and smooth muscle cells and its mainly involved in organogenesis during embryonic development. However, it's also overexpressed in several pathological conditions, including cancer and inflammation. The DDR1 is reported in numerous cancers, including breast, prostate, pancreatic, bladder, lung, liver, pituitary, colorectal, skin, gastric, glioblastoma, and inflammation. DDR1 activates through the collagen I, IV, IGF-1/IGF1R, and IGF2/IR, regulating downstream signaling molecules such as MAPKs, PI3K/Akt, and NF-kB in diseases. Despite its biomedical importance, there is a lack of consolidated network map of the DDR1 signaling pathway, which prompted us for curation of literature data pertaining to the DDR1 system following the NetPath criteria. We present here the compiled pathway map comprises 39 activation/inhibition events, 17 catalysis events, 22 molecular associations, 65 gene regulation events, 35 types of protein expression, and two protein translocation events. The detailed DDR1 signaling pathway map is made freely accessible through the WikiPathways Database ( https://www.wikipathways.org/index.php/ Pathway: https://www.wikipathways.org/index.php/Pathway:WP5288 ).

13.
Mol Biol Rep ; 49(10): 9915-9927, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35596055

RESUMO

Bradykinin, a member of the kallikrein-kinin system (KKS), is a potent, short-lived vasoactive peptide that acts as a vasodilator and an inflammatory mediator in a number of signaling mechanisms. Bradykinin induced signaling is mediated through kinin B1 (BDKRB1) and B2 (BDKRB2) transmembrane receptors coupled with different subunits of G proteins (Gαi/Gα0, Gαq and Gß1γ2). The bradykinin-mediated signaling mechanism activates excessive pro-inflammatory cytokines, including IL-6, IL-1ß, IL-8 and IL-2. Upregulation of these cytokines has implications in a wide range of clinical conditions such as inflammation leading to fibrosis, cardiovascular diseases, and most recently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In SARS-CoV-2 infection, bradykinin is found to be at raised levels and is reported to trigger a diverse array of symptoms. All of this brings bradykinin to the core point as a molecule of immense therapeutic value. Our understanding of its involvement in various pathways has expanded with time. Therefore, there is a need to look at the overall picture that emerges from the developments made by deciphering the bradykinin mediated signaling mechanisms involved in the pathological conditions. It will help devise strategies for developing better treatment modalities in the implicated diseases. This review summarizes the current state of knowledge on bradykinin mediated signaling in the diverse conditions described above, with a marked emphasis on the therapeutic potential of targeting the bradykinin receptor.


Assuntos
Bradicinina , COVID-19 , Humanos , Interleucina-2 , Interleucina-6 , Interleucina-8 , Receptores da Bradicinina/fisiologia , SARS-CoV-2 , Vasodilatadores
14.
J Cell Commun Signal ; 16(4): 601-608, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35174439

RESUMO

Urotensin-II is a polypeptide ligand with neurohormone-like activity. It mediates downstream signaling pathways through G-protein-coupled receptor 14 (GPR14) also known as urotensin receptor (UTR). Urotensin-II is the most potent endogenous vasoconstrictor in mammals, promoting cardiovascular remodelling, cardiac fibrosis, and cardiomyocyte hypertrophy. It is also involved in other physiological and pathological activities, including neurosecretory effects, insulin resistance, atherosclerosis, kidney disease, and carcinogenic effects. Moreover, it is a notable player in the process of inflammatory injury, which leads to the development of inflammatory diseases. Urotensin-II/UTR expression stimulates the accumulation of monocytes and macrophages, which promote the adhesion molecules expression, chemokines activation and release of inflammatory cytokines at inflammatory injury sites. Therefore, urotensin-II turns out to be an important therapeutic target for the treatment options and management of associated diseases. The main downstream signaling pathways mediated through this urotensin-II /UTR system are RhoA/ROCK, MAPKs and PI3K/AKT. Due to the importance of urotensin-II systems in biomedicine, we consolidated a network map of urotensin-II /UTR signaling. The described signaling map comprises 33 activation/inhibition events, 31 catalysis events, 15 molecular associations, 40 gene regulation events, 60 types of protein expression, and 11 protein translocation events. The urotensin-II signaling pathway map is made freely accessible through the WikiPathways Database ( https://www.wikipathways.org/index.php/Pathway:WP5158 ). The availability of comprehensive urotensin-II signaling in the public resource will help understand the regulation and function of this pathway in normal and pathological conditions. We believe this resource will provide a platform to the scientific community in facilitating the identification of novel therapeutic drug targets for diseases associated with urotensin-II signaling.

15.
J Cell Commun Signal ; 16(2): 301-310, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34714516

RESUMO

Bradykinin, a member of the kallikrein-kinin system (KKS), is associated with an inflammatory response pathway with diverse vascular permeability functions, including thrombosis and blood coagulation. In majority, bradykinin signals through Bradykinin Receptor B2 (B2R). B2R is a G protein-coupled receptor (GPCR) coupled to G protein family such as Gαqs, Gαq/Gα11, Gαi1, and Gß1γ2. B2R stimulation leads to the activation of a signaling cascade of downstream molecules such as phospholipases, protein kinase C, Ras/Raf-1/MAPK, and PI3K/AKT and secondary messengers such as inositol-1,4,5-trisphosphate, diacylglycerol and Ca2+ ions. These secondary messengers modulate the production of nitric oxide or prostaglandins. Bradykinin-mediated signaling is implicated in inflammation, chronic pain, vasculopathy, neuropathy, obesity, diabetes, and cancer. Despite the biomedical importance of bradykinin, a resource of bradykinin-mediated signaling pathway is currently not available. Here, we developed a pathway resource of signaling events mediated by bradykinin. By employing data mining strategies in the published literature, we describe an integrated pathway reaction map of bradykinin consisting of 233 reactions. Bradykinin signaling pathway events included 25 enzyme catalysis reactions, 12 translocations, 83 activation/inhibition reactions, 11 molecular associations, 45 protein expression and 57 gene regulation events. The pathway map is made publicly available on the WikiPathways Database with the ID URL: https://www.wikipathways.org/index.php/Pathway:WP5132 . The bradykinin-mediated signaling pathway map will facilitate the identification of novel candidates as therapeutic targets for diseases associated with dysregulated bradykinin signaling.

16.
J Cell Commun Signal ; 16(1): 137-143, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33797707

RESUMO

The apelin receptor (APLNR) is a class A (rhodopsin-like) G-protein coupled receptor with a wide distribution throughout the human body. Activation of the apelin/APLNR system regulates AMPK/PI3K/AKT/mTOR and RAF/ERK1/2 mediated signaling pathways. APLNR activation orchestrates several downstream signaling cascades, which play diverse roles in physiological effects, including effects upon vasoconstriction, heart muscle contractility, energy metabolism regulation, and fluid homeostasis angiogenesis. We consolidated a network map of the APLNR signaling map owing to its biomedical importance. The curation of literature data pertaining to the APLNR system was performed manually by the NetPath criteria. The described apelin receptor signaling map comprises 35 activation/inhibition events, 38 catalysis events, 4 molecular associations, 62 gene regulation events, 113 protein expression types, and 4 protein translocation events. The APLNR signaling pathway map data is made freely accessible through the WikiPathways Database ( https://www.wikipathways.org/index.php/Pathway:WP5067 ).

17.
J Cell Commun Signal ; 16(1): 145-154, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34339006

RESUMO

Elabela (ELA; also called Apela and Toddler) is one of the recently discovered ligand among the two endogenous peptide ligands (Apelin and Elabela) of the apelin receptor (APLNR, also known as APJ). Elabela-induced signaling plays a crucial role in diverse biological processes, including formation of the embryonic cardiovascular system and early placental development by reducing the chances of occurrence of preeclampsia during pregnancy. It also plays the major role in the renoprotection by reducing kidney injury and the inflammatory response and regulation of gene expression associated with heart failure and fibrosis. Elabela may be processed into different active peptides, each of which binds to APLNR and predominantly activates the signals through PI3K/AKT pathway. Owing to its biomedical importance, we developed a consolidated signaling map of Elabela, in accordance with the NetPath criteria. The presented Elabela signaling map comprises 12 activation/inhibition events, 15 catalysis events, 1 molecular association, 34 gene regulation events and 32 protein expression events. The Elabela signaling pathway map is freely made available through the WikiPathways Database ( https://www.wikipathways.org/index.php/Pathway:WP5100 ).

18.
Mol Carcinog ; 60(11): 769-783, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34437731

RESUMO

Although CAMKK2 is overexpressed in several cancers, its role and relevant downstream signaling pathways in gastric cancer (GC) are poorly understood. Treatment of AGS GC cells with a CAMKK2 inhibitor, STO-609, resulted in decreased cell proliferation, cell migration, invasion, colony-forming ability, and G1/S-phase arrest. Quantitative phosphoproteomics in AGS cells with the CAMKK2 inhibitor led to the identification of 9603 unique phosphosites mapping to 3120 proteins. We observed decreased phosphorylation of 1101 phosphopeptides (1.5-fold) corresponding to 752 proteins upon CAMKK2 inhibition. Bioinformatics analysis of hypo-phosphorylated proteins revealed enrichment of MAPK1/MAPK3 signaling. Kinase enrichment analysis of hypo-phosphorylated proteins using the X2K Web tool identified ERK1, cyclin-dependant kinase 1 (CDK1), and CDK2 as downstream substrates of CAMKK2. Moreover, inhibition of CAMKK2 and MEK1 resulted in decreased phosphorylation of ERK1, CDK1, MCM2, and MCM3. Immunofluorescence results were in concordance with our mass spectroscopy data and Western blot analysis results. Taken together, our data reveal the essential role of CAMKK2 in the pathobiology of GC through the activation of the MEK/ERK1 signaling cascade.


Assuntos
Benzimidazóis/farmacologia , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Naftalimidas/farmacologia , Proteômica/métodos , Neoplasias Gástricas/metabolismo , Proteína Quinase CDC2/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida , Quinase 2 Dependente de Ciclina/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Espectrometria de Massas em Tandem
19.
J Cell Commun Signal ; 15(4): 601-608, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34181169

RESUMO

Coronavirus disease (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 has been declared a pandemic by WHO. The clinical manifestation and disease progression in COVID-19 patients varies from minimal symptoms to severe respiratory issues with multiple organ failure. Understanding the mechanism of SARS-CoV-2 interaction with host cells will provide key insights into the effective molecular targets for the development of novel therapeutics. Recent studies have identified virus-mediated phosphorylation or activation of some major signaling pathways, such as ERK1/2, JNK, p38, PI3K/AKT and NF-κB signaling, that potentially elicit the cytokine storm that serves as a major cause of tissue injuries. Several studies highlight the aggressive inflammatory response particularly 'cytokine storm' in SARS-CoV-2 patients. A depiction of host molecular dynamics triggered by SARS-CoV-2 in the form of a network of signaling molecules will be helpful for COVID-19 research. Therefore, we developed the signaling pathway map of SARS-CoV-2 infection using data mined from the recently published literature. This integrated signaling pathway map of SARS-CoV-2 consists of 326 proteins and 73 reactions. These include information pertaining to 1,629 molecular association events, 30 enzyme catalysis events, 43 activation/inhibition events, and 8,531 gene regulation events. The pathway map is publicly available through WikiPathways: https://www.wikipathways.org/index.php/Pathway:WP5115 .

20.
J Cell Commun Signal ; 15(2): 283-290, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33136287

RESUMO

Calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) is a serine/threonine-protein kinase belonging to the Ca2+/calmodulin-dependent protein kinase subfamily. CAMKK2 has an autocatalytic site, which gets exposed when Ca2+/calmodulin (CAM) binds to it. This results in autophosphorylation and complete activation of CAMKK2. The three major known downstream targets of CAMKK2 are 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPKα), calcium/calmodulin-dependent protein kinase 1 (CAMK1) and calcium/calmodulin-dependent protein kinase 4 (CAMK4). Activation of these targets by CAMKK2 is important for the maintenance of different cellular and physiological processes within the cell. CAMKK2 is found to be important in neuronal development, bone remodeling, adipogenesis, and systemic glucose homeostasis, osteoclastgensis and postnatal myogensis. CAMKK2 is reported to be involved in pathologies like Duchenne muscular dystrophy, inflammation, osteoporosis and bone remodeling and is also reported to be overexpressed in prostate cancer, hepatic cancer, ovarian and gastric cancer. CAMKK2 is involved in increased cell proliferation and migration through CAMKK2/AMPK pathway in prostate cancer and activation of AKT in ovarian cancer. Although CAMKK2 is a molecule of great importance, a public resource of the CAMKK2 signaling pathway is currently lacking. Therefore, we carried out detailed data mining and documentation of the signaling events associated with CAMKK2 from published literature and developed an integrated reaction map of CAMKK2 signaling. This resulted in the cataloging of 285 reactions belonging to the CAMKK2 signaling pathway, which includes 33 protein-protein interactions, 74 post-translational modifications, 7 protein translocation events, and 22 activation/inhibition events. Besides, 124 gene regulation events and 25 activator/inhibitors involved in CAMKK2 activation were also cataloged. The CAMKK2 signaling pathway map data is made freely accessible through WikiPathway database ( https://www.wikipathways.org/index.php/Pathway:WP4874 ). We expect that data on a signaling map of CAMKK2 will provide the scientific community with an improved platform to facilitate further molecular as well as biomedical investigations on CAMKK2 and its utility in the development of biomarkers and therapeutic targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...